0
×

Selected Tests

No tests selected yet.

آپکی صحت کا نمبر 24/7

03-111-456-789

Red Cell Antibody Identification

Specimen Required

3cc EDTA & 7cc Clotted Blood

Fasting Required

Add To Cart

Purpose of the Test

To identify the specific antibody present when a direct antiglobulin test (DAT) or indirect antiglobulin test (IAT) is positive; to help identify the cause of a transfusion reaction or the cause of haemolytic disease of the foetus and neonate (HDFN)

When this test is required

The antibody identification test may be requested whenever an IAT or a DAT is positive and may be repeated when a person has a transfusion reaction or when a mother has a baby with HDFN.

What the Test Detects

This test is designed to identify red cell antibodies that are present in the blood. A person may develop antibodies that react with antigens on red blood cells if they are exposed to ‘foreign’ red blood cells (e.g. through blood transfusion or during pregnancy). The red blood cell antibody identification test allows the laboratory to determine exactly which antibodies are present in the blood of a patient and this information can…This test is designed to identify red cell antibodies that are present in the blood. A person may develop antibodies that react with antigens on red blood cells if they are exposed to ‘foreign’ red blood cells (e.g. through blood transfusion or during pregnancy). The red blood cell antibody identification test allows the laboratory to determine exactly which antibodies are present in the blood of a patient and this information can then be used to ensure that if they require blood or blood products, only those from a suitable donor (i.e. someone who does not have antigens on their cells that would react with the patient’s antibodies) are used. Red cells carry many different proteins and substances on their cell membrane surface that can act as antigens. An antigen is any substance that may be recognised by the immune system and stimulate an immune response that generates antibodies. The combination of antigens present on the surface of red blood cells determines your blood type. The major red cell antigens include the A, B and Rhesus (Rh) antigens that determine a person’s basic blood types (for more on this, see Blood Type and Blood Banking). The ABO blood group system is the most important blood group system in blood transfusion because our bodies naturally produce antibodies against A and B antigens, depending on whether or not they are present on our own red blood cells. A person who is blood group A will have A antigens on their own red cells and produces anti-B antibodies; a person with blood group B has B antigens on their red cells and produces anti-A antigens; a person of blood group O does not express A or B antigens on their own red cells and produces both anti-A and anti-B antibodies; a person with blood group AB has both A and B antigens on the surface of their red blood cells and does not produce antibodies to either of these. These naturally occurring antibodies are present in almost all by the age of 6 months and are very potent; if a person of blood group O was exposed to blood group A or B red cells, their antibodies would rapidly attack and destroy the foreign red cells. This destruction of red cells is called haemolysis.Blood group Naturally occurring RBC antibodies that can be found in the blood O Anti-A and anti-B A Anti-B B Anti-A AB None The second most important blood group system in blood transfusion is the Rhesus blood group system. If the Rhesus D antigen is present then this makes an individual Rh D positive; this is combined with the ABO blood group to describe an individuals’ basic blood group, e.g. A+, B-, O+, etc. The Rh D antigen is very important because, although antibodies against Rh D do not occur naturally in individuals who are Rh D negative, if these individuals are exposed to even a small amount of Rh D antigen there is a potent immune response with production of anti-D antibodies which are also capable of destroying red cells and causing haemolysis. It is estimated that a Rh D negative person needs to be exposed to only one or two drops of Rh D positive blood to trigger the production of anti-D antibodies. The pattern of red cell antigens and therefore the blood group of an individual will be determined by their genetic make-up and so blood groups are inherited traits. The major blood group systems (ABO and Rhesus) represent only two of the 33 currently recognised blood group systems. These other blood group systems include the Kell, Duffy, Kidd and Lutheran groups to name a few. These other blood group systems are not associated with naturally occurring antibodies; as for the Rh system a person must be exposed to red cells carrying the foreign antigen before they mount an immune response producing antibodies. A person will not usually develop antibodies against the blood group antigens present on their own cells but may develop antibodies against other blood group antigens that they are exposed to, e.g. if they receive blood from another individual during a blood transfusion. This is the reason why a ‘group and screen’ procedure is performed to identify the blood group and screen for the presence of any antibodies in blood during the blood transfusion screening process. If antibodies to red cells are identified during this process the red cell antibody identification test is performed to identify exactly which antibodies are present and allow for screening of donor blood and selection of only matched units (i.e. antigen negative donor red cells) for cross-matching. The presence of red cell antibodies may also be detected by a positive direct antiglobulin test (DAT). It is very important to identify the presence of red cell antibodies. If a person with red cell antibodies is exposed to red cells which carry the antigenic target then antibodies will attach to the red cell antigen on the surface of the cells, coating the red cell and targeting it for destruction (haemolysis). Depending on the specific antibody-antigen reaction and the quantity of red cells that are affected, this can cause a reaction ranging from mild to severe and potentially life-threatening. Depending on the antigen and antibody involved and the quantity of RBCs affected, this can cause a reaction ranging from mild to severe and potentially life-threatening. It may happen immediately, such as during a blood transfusion, or take longer, from one to several days following a transfusion. When antibodies attach to antigens, the red blood cells can be destroyed, termed haemolysis. This can occur within the blood vessels or in the liver or spleen and cause symptoms and signs such as fever, chills, nausea, flank pain, low blood pressure, bloody urine, and jaundice. Specific antibody identification tests that characterise antibodies directed against the minor red cell blood group antigens are not routinely done on every patient, but these are performed when the presence of an antibody is detected through a positive IAT using a mixed panel of cells carrying all clinically significant antigens, or when antibodies are detected by a positive DAT. How is the sample collected for testing? A blood sample is obtained by inserting a needle into a vein in the arm. Is any test preparation needed to ensure the quality of the sample? No test preparation is needed. See MoreSee Less

Preparation for the Test

None

Sample Requirements

The test is performed on a sample of blood obtained from a vein in the arm using a needle. This is a process which may be referred to as ‘venepuncture’.

Additional Notes

Some RBC antibodies are naturally occurring; they do not require an initial exposure to the specific targeted antigen during blood transfusion, pregnancy, etc. These include antibodies that correspond to the major A and B red blood cell antigens.RBC antibodies are not the only things that can cause a transfusion reaction. The recipient’s immune system may also react to someone else’s white blood cells, platelets, and may sometimes form auto antibodies that target their own red blood cells. Rarely, antibodies in the plasma of the blood donor may target the RBCs of the transfusion recipient.Some RBC antibodies may not target a specific RBC antigen but may react with a broad range of different red blood cell antigen types, including the patient’s own. These types of antibodies can occur in association with autoimmune disorders, lymphomas and chronic lymphocytic leukaemia, certain viral or mycoplasma infections, and some medications.An RBC antibody can occasionally be missed with antibody identification testing. There are many RBC antigens and some of them are quite rare. Testing evaluates the most common and clinically significant ones. An example of when this might occur is with a person who receives multiple recurrent transfusions and may have a variety of clinically significant and insignificant RBC antibodies. This is why the crossmatching process is important. It evaluates the compatibility of the donor’s red blood cells and recipient’s serum for each unit of RBCs transfused (see Blood Banking).